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Abstract. We prove a sharp criterion on the decay of the potential of a Schrodinger operator 
on !X3 that ensures the absence of a zero-energy ground state. This condition complements 
results due to Simon and Lieb. We also give an improved version of their results which, 
however, is still not optimal. 

1. Introduction 

There has been some interest in the last few years in determining conditions on the 
potential that guarantee the absence of a zero-energy ground state of the Schrodinger 
operator (see e.g. Simon 1981, Lieb 1981, Ramm 1987, 1988). In this paper we prove 
a sharp condition on the decay of the potential that guarantees the absence of a 
zero-energy ground state of the Schrodinger operator in ?H3. This condition becomes 
necessary and sufficient if one restricts the potential to have an asymptotic power law 
behaviour. We also give an improved version of a theorem of Simon and Lieb (Simon 
1981, Lieb 1981). We point out that the techniques used here do not only work in 
three but also in more dimensions. We refer the reader to the articles of Knowles 
(1981) and Agmon (1970) for the existence of zero eigenvalues in the one-dimensional 
case and in the higher-dimensional case respectively. We refer also to the work of 
Murata (1986 and references therein) for recent results on the subject. 

Here we are concerned with positive solutions (i.e. ground states) of the Schrodinger 
equation with zero energy, 

-Au+ VU = O  (1) 

in !R3. For simplicity we assume V to be continuous in the whole !H3, although this 
condition can be relaxed (see remark (iii) below theorem 1). For a function h defined 
on !)I3 we denote by [ h ]  its spherical average (i.e. [ h ] ( r )  = j  h ( r ,  R )  dfl, and dR is 
the normalised, invariant, spherical measure on the unit ball). We also denote by 
h ,  = max(h, 0) the positive part of h. Our main result is the following. 

Theorem 1. Let U be a positive solution of (1) with V continuous in !N3 and such that 

3 
[ V ( X ) I + ~ - -  for all 1x1 L a, some a > 0. 

41x1~ 

Then, U E L2(9i3) .  
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(2) 
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Remarks. 
( i )  The multiplicative constant 3/4 in (2)  is optimal, as it is simple to exhibit a 

potential decaying as c/(x12 at infinity for any c > 3/4, with U > 0, U E L2(!N’). In fact, 
take 

U ( r )  ( r +  1 ) - - ( 3 ’ 2 + f )  & > O  

which is clearly in L2(!X3) and positive (here r = 1x1). This is the ground state of the 
Schrodinger equation for the potential 

( j + ~ ) [ ( t + ~ ) r - 2 ]  ( $ + & ) ( + + E )  

r ( r +  1 ) 2  r2 V(r)  = z at CO 

with zero energy. 
(ii) Theorem 1 complements a theorem of Simon (1981, theorem A.3.1) on the 

absence of zero-energy ground states for potentials V E L3I2(!N3). Simon’s theorem 
was later improved by Lieb (1981, lemma 7.18). 

(iii) The condition on V to be continuous was made only for simplicity of the 
proof. It is enough to request the potential V to be in LP,,, with q > 3/2. This condition 
guarantees the existence of Harnack’s inequality for U (Gilbarg er a1 1983), needed in 
the proof. In that case one should interpret the equations in distributional sense. 

(iv) The proof of theorem 1 also works for the weaker condition on V: 

where P > 0 and l; P( r ) r  d r  < 00 for some p 2 a > 0. See remark (i)  below the proof 
of theorem 2. 

(v) Theorem 1 even holds for a condition slightly weaker than (3), namely 

for r 3 a > 0. The multiplicative constant 1 in front of l / ln  r is optimal. 
(vi) Ideas similar to the ones used in the proof of theorem 1 have been recently 

used (Ashbaugh er a1 1989) to study the L*-norm of the positive solution of the 
Thomas-Fermi-von Weizsacker equation (Lieb 1981) with exponents 3/2 G p s 5/3. 

The rest of this paper is organised as follows: in section 2 we give a proof of 
theorem 1 in the spherically symmetric case. The general proof follows from that with 
the help of a technical lemma due to Lieb. In section 3 we give an improved version 
of a theorem of Lieb and Simon on the non-existence of zero-energy ground states 
under an integral condition on the potential. 

2. Proof of theorem 1 

First we prove theorem 1 in the spherically symmetric case. We do so because the 
proof in this case is technically very simple and at the same time illustrates the general 
idea. Moreover, the proof of the general case follows from here and the use of a 
theorem of Lieb (lemma 5, below). 
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Theorem 2 (spherically symmetric case). Consider the Schrodinger equation ( 1 )  with 
V ( x )  = V(lx1) and u ( x )  = ~ ( 1 x 1 )  > 0. Assume. 

for all r = 1x1 3 a 
3 

V , . ( r ) s -  
4r’ ( 5 )  

for some positive a. Then U j Z  L’( D ) ,  with D = { x  11x1 3 a } .  

Proof: In the spherically symmetric case the Schrodinger equation (1) is given by 

for r 2 a. ( 6 )  
2 3 

U”+- u ’ =  v u  s y  U 
r 4r- 

Here ’= d/dr. Let g ( r )  = l /r3’2.  Then g satisfies 

for r # 0. ( 7 )  
2 3 

g” +; g’ = 2 8 

From (6) and ( 7 )  it follows that 

for all r 2 a (8) 

and any positive a. Since we are assuming V continuous, U E C 2 ,  therefore U - ag E 

C 2 ( D ) .  Since U and g are both strictly positive, we can choose a = u ( a ) / g ( a ) > O .  
Then ( U  - a g ) ( a )  = 0 and it is clear from (8) that U - ag cannot have a negative 
minimum. Therefore, there are two possibilities: 

( i )  either ( U  - a g ) (  r )  3 0 for all r s a, or 
(ii) (U - a s ) (  r )  s 0 and decreasing (non-increasing) for all r 3 a. 

2 3 
r 4r2 

( U  - a g ) ” + -  ( U  - a g ) ’ s -  (U - a g )  

If case ( i )  holds the proof is complete, since gjZ L’((D). If case ( i i )  holds, O s  
u ( r ) - a g ( r ) s u ( s ) - a g ( s ) s - a g ( s )  for all s > r  since u - a g  is decreasing (non- 
increasing) and U > 0. Taking s + CO we get U( r )  - ag( r )  = 0 for all r 2 a which again 
implies U E L‘. 0 

Remarks. 
( i )  The proof of theorem 2 also works if ( 5 )  is replaced by 

3 
V ( r ) s y + P ( r )  

4r 

with P 2 0  and jz r P ( r )  d r < a ,  for some P 2 a. By theorem 9.1 of Hartman’s book 
(Hartman 1964) this condition on P implies the existence of a positive solution g of 

that behaves as l / r 3 ’ 2  at infinity. 
(i i)  One can prove theorem 2 even under the slightly weaker condition 

by choosing an appropriate g (see the remark after corollary 4). In this condition, the 
multiplicative constant 1 in  front of the l / ln  r term is optimal. Adding more small 
terms which decay slightly faster than l / l n  r is also possible. I t  does not seem to be 
obvious how to describe exhaustively the class of all potentials which do not have 
zero-energy ground states (except for the statement of corollary 4 below). 
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Using the same method as in the proof of theorem 2 one can prove the following. 

Lemma 3. Let g be a positive radial solution of A g  2 Vg on D = {x 11x1 2 a} (with V 
spherically symmetric), such that g+O as r + a .  Then, there is an a>O such that 
a g s  U, on 0, where U is a positive radial solution of (1). 

The previous lemma allows us to give the following extension of theorem 2, which 
somehow gives an implicit characterisation of the potentials which do not have 
zero-energy ground states. 

Corollary 4. If there is a function g satisfying the hypothesis of lemma 3, and g & L2( D), 
then U & L2( D ) ,  where U is a positive radial solution of (1). 

Remark. To illustrate the content of corollary 4, let us show that if V ( r ) 4  
[(3/4) + ( l / ln  r ) ] / r 2  on 0, then U L2(D) .  This follows by taking the function g( r)  = 
l/(r3’2(ln r)1’2), which is positive (choose a > 1) on 0, it goes to zero at infinity, it is 
not in L2(D)  and it satisfies Ag 5 Vg on D. The constant in front of the term l / ln  r 
is optimal. In fact, 

1 1 
(r+2)3’2 (1n(r+2))‘’+‘)’~ 

u ( r )  = 

is in L2(!X3), for any E > 0, and it is the ground state of the Schrodinger operator with 
a potential that behaves as 

at infinity. 

The proof of theorem 1 is a consequence of theorem 2 and the following result of 
Lieb (1981, lemma 7.17) which we reproduce here for completeness. 

Lemma 5 (Lieb). Let S ,  denote the sphere {x ](xi = R }  and let d o  be the normalised, 
invariant, spherical measure on SI .  For any function h, let [ h ] ( r )  = h( r, 0) dR be 
the spherical average of h. Now suppose $(x)>O is C2 in a neighbourhood of S R .  
Let f(r) = exp{[ln $ I (  r ) } .  Then for all r in some neighbourhood of R, 

Proof: Let p ( x )  = In $(x). Then ( A $ / $ )  = A p  + (VpI2. Clearly [ A p ]  = A [ p ] .  Moreover, 
( V P ) ~ ~  { a p ( r ,  Q ) / a r } 2 ,  and [ ( ~ 3 p / d r ) ~ ]  3 ( d [ ~ ] / d r ) ~  by the Schwarz inequality. Thus 

0 [ A $ / $ l  a N P l +  ( V [ P N 2  = Af/J:  

To conclude this section we give the following proof. 

Proofoftheorem 1 .  Let U be a positive solution of (1) and le t f ( r )  =exp{[ln u ] ( r ) }  as 
in lemma 5 .  Then f satisfies 

1 1 

and, because of theorem 2 , fa  L2(D) .  By Jensen’s inequality If’s 5 U’, then U & L 2 ( D )  
0 (this argument is taken from Lieb (1981, lemma 7.18)). 
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3. Improved version of a theorem of Lieb and Simon 

Our theorem 1 is a complement to the following theorem of Lieb (1981, lemma 7.18), 
which is an improvement of an earlier result of Simon (1981, theorem A.3.1). 

Theorem 6 (Lieb). Suppose +(x) > 0 is a C 2  function in a neighbourhood of the domain 
D and +satisfies ( - A +  V(x))+(x) 3 Oon D. Suppose [ VI, E L3’2(D).  Then + &  L’(D). 

In this section we give a theorem (theorem 7 below) that bridges the gap between 
our theorem 1 and Lieb’s theorem. In fact, theorem 7 is an improvement of theorem 
6, and its proof is based on the same methods as employed in section 2 .  

Theorem 7. Let U be a positive solution of the equation 

-Au+  V u 2 0  in D = { x l l x l > a } .  
Assume that [ V I +  satisfies 

(9) 

Then $6 L2(D) .  

Proof: Using Lieb’s method (i.e. using lemma 5 above), it is enough to prove theorem 
6 for V and U spherically symmetric. In the spherically symmetric case, theorem 7 is 
a consequence of lemma 3 above and an ordinary differential equations existence result 

0 which we give in what follows (lemma 8 below). 

Remarks. 

(1981, lemma 7.18). In fact, if [ V]+E L3’2(D), using Holder’s inequality we get 
( i )  The condition (9) on V is weaker than the hypothesis [ VI, E L3’* used by Lieb 

Hence, j:[V]+(s)ds=o(l)/r, for r + m .  

theorem 1. 
(ii) The multiplicative constant 1/2 in (10) is not optimal, as is clear from 

Lemma 8. Let V be a non-negative, spherically symmetric potential satisfying 
V(s) ds  d 1 / ( 2 r )  on D. Then there is a positive radial solution of Ag = Vg, such 

that g + O  as r + m  and gE L 2 ( D ) .  

Proof: Let w ( r )  = r g ( r ) .  Hence, 
w”( r )  = V( r )  w( r )  

on D. Since V Z O ,  there are two types of positive solutions of (11) namely, those 
which are increasing and go to infinity at infinity and those which are decreasing and 
whose derivative go to zero at infinity (Hartman 1964). We choose here a solution of 
the second type and we will denote it by w. If lim,+r w( r )  # 0 we are done, since 
g ( r )  = w ( r ) / r  E L* (D) .  Thus, we can assume Iimr+= w ( r )  = 0. Integrating (11) from r 
to infinity we have 

V(s )w(s )dsd  w ( r )  (12) 
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where the second inequality follows from the monotonicity of w and the third follows 
from the hypothesis on V. Therefore, from (12), we have that w (  r ) r ” 2  is non-decreasing, 

0 hence w( r )  3 kr-’’2 and thus g & L2( D) .  

To conclude, we point out that if V is such that V ( s )  d s  =s c / r  in lemma 8, then 
g & L”, for all 1 S p S 3/ (c  + 1). As we have seen in remark (i)  below theorem 7, if 
V E  L3”( D ) ,  we have that c can be taken arbitrarily small for big enough r and thus 
g (and therefore U, because of lemma 3) is not in L” for all 1 s p < 3, a result due to 
Brezis (see the note added in proof after lemma 7.18 in Lieb (1981)). 
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